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Abstract

We present necessary and sufficient conditions for the existence of a unique
solution of the generalized ?-Sylvester matrix equation AXB + CX?D =
E, where A,B,C,D,E are square matrices of the same size with real or
complex entries, and where ? stands for either the transpose or the conjugate
transpose. This generalizes several previous uniqueness results for specific
equations like the ?-Sylvester or the ?-Stein equations.
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1. Introduction

Given A,B,C,D,E ∈ Fn×n, with F being C or R, we consider the equa-
tion

AXB + CX?D = E (1)

where X ∈ Fn×n is an unknown matrix, and where, for a given matrix M ∈
Fn×n, M? stands for either the transpose MT or the conjugate transpose M∗.
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In the last few years, this equation has been considered by several authors
in the context of linear Sylvester-like equations arising in applications (see,
for instance, [3, 14, 17, 18]).

Equation (1) is a natural extension of the ?-Sylvester equation

AX +X?D = E, (2)

and it is closely related to the generalized Sylvester equation

AXB + CXD = E. (3)

For this reason, we refer to (1) as a generalized ?-Sylvester equation. Note
that (3) contains, as a particular case, the classical Sylvester equation

AX +XD = E, (4)

in the same way as (2) is a particular case of (1).
Two of the most relevant theoretical questions regarding the solvability

of these matrix equations are:

(a) Find necessary and sufficient conditions for the existence of a solution.

(b) Find necessary and sufficient conditions for the existence of a unique
solution.

These questions can be answered when considering the matrix equation
as a linear system in the entries of X (or of re(X) and im(X)). However,
this approach is of limited interest, since it involves matrices of much larger
size and difficult to be handled. For this reason, the research efforts have
been focused on getting an answer to these questions in terms of matrices or
matrix pencils of the size of the matrix coefficients.

With this constraint in mind, question (a) has been already solved in the
literature for all equations (1)–(4). More precisely, the characterization of
consistency of the Sylvester equation (4), in terms of the matrix coefficients,
was obtained back in 1952 by Roth and it is currently known as “Roth’s cri-
terion” [15]. For the ?-Sylvester equation (2), a similar characterization was
obtained in [19] for F = C, and later in [6] for F being an arbitrary field with
characteristic different from 2. Recently, necessary and sufficient conditions
have been obtained for the consistency of general systems containing both
Sylvester and ?-Sylvester equations, including the case where only one type
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of these equations is present [8]. These systems include the case of single
equations such as (1) and (3).

Regarding question (b), characterizations for the uniqueness of solutions
of (2)–(4) are also known. They consist of spectral properties of matrices or
matrix pencils constructed in a simple way just using the coefficient matrices.
In particular, (4) has a unique solution if and only if A and D have disjoint
spectrum [10, Ch. 8.1]. As for (3), it has a unique solution if and only if
the pencils A + λC and D − λB are regular and have disjoint spectrum [4,
Thm. 1].

The characterization of the uniqueness of solution of (2) consists of exclu-
sion conditions on the spectrum of the pencil A−λD? [1, 13] (see Theorem 4).
It is interesting to note that, for the equation AX +CX? = E, which is also
a particular case of (1), the characterization of the uniqueness of solution is
exactly the same as for (2) but replacing A− λD? by A− λC [5].

The goal of this work is to characterize the uniqueness of solution of (1)
in terms of pencils with size 2n constructed from the coefficients A,B,C,D.

It is worth mentioning that necessary and sufficient conditions for the
uniqueness of solution of (1), as a part of an algorithmic procedure, have
been obtained in [3, Sec 4.2] (other iterative algorithms can be found in
[16, 20], where uniqueness is not discussed). Nevertheless, these conditions
are not given explicitly in terms of the coefficients and thus they do not give
a satisfactory answer to question (b) for equation (1).

In summary, we can say that the characterization of the uniqueness of
solution of standard Sylvester equations (3)–(4) and the characterization of
uniqueness of solution of ?-Sylvester equations present some interesting dif-
ferences. While the first one consists of exclusion conditions on the joint
spectrum of a couple of two different matrix pencils constructed from the
coefficient matrices, the second one consists of exclusion conditions on the
spectrum of a single pencil that involves all coefficient matrices. The charac-
terization of the uniqueness of solution of the generalized ?-Sylvester equa-
tion (2), proposed here, will confirm this behavior.

1.1. A pencil approach to the uniqueness problem

Equation (1) can be transformed into a linear system using: (i) the vec
operator which stacks the columns of a matrix in a long vector; (ii) the
Kronecker product, for which we have: vec(AXB) = (BT ⊗ A) vec(X); and
(iii) a permutation matrix Π of size n2 × n2 such that Π vec(X) = vec(XT ).
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In particular:

vec(CXTD) = (DT⊗C) vec(XT ) = (DT⊗C)Π vec(X) = Π(C⊗DT ) vec(X),

where the last identity comes from the fact that the similarity through Π
inverts the order of the Kronecker product [11, Sec. 4.3].

As a consequence, equation (1) is equivalent to the system(
(BT ⊗ A) + Π(C ⊗DT )

)
vec(X) = vec(E, ) if ? = T , (5)

(BT ⊗ A) vec(X) + Π(C ⊗DT ) vec(X ) = vec(E) if ? = ∗, (6)

where X denotes the conjugate of the matrix X. The system of equations
(5) is linear over C, but the system (6) is not. However, if we split the real
and imaginary parts of all coefficient matrices A,B,C,D,E, as well as the
real and imaginary parts of the unknown matrix X, then (6) is equivalent to
the linear system

R vec
([

re(X) im(X)
])

= vec
([

re(E) im(E)
])
, (7)

for some matrix R with real entries and size (2n2)× (2n2).
As a first approach to address the uniqueness of solution of (1) note that

the maps

F : Cn2 −→ Cn2

vec(X) 7→
(
(BT ⊗ A) + Π(C ⊗DT )

)
vec(X),

and

R : R2n2 −→ R2n2

vec
([

re(X) im(X)
])

7→ R vec
([

re(X) im(X)
])
,

with R as in (7), are linear maps. Then (1) has a unique solution, for any
right hand side E ∈ Cn×n, if and only if the homogeneous equation

AXB + CX?D = 0 (8)

has only the trivial solution. As a consequence, for the uniqueness of the
solution we can focus on equation (8) instead of (1).

From the point of view of applications, the most interesting situation of
the case ? = T is when all coefficient matrices are real, so that the map F
above can be seen as a real map and the solution X we are looking for is real
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as well. Also, when all coefficient matrices A,B,C,D,E have real entries,
the unique solution of (1) with ? = ∗ has real entries as well. To see this,
note that, by taking conjugates in (1), also X is a solution of (1), so it must
be X = X , hence X must be real. Then, in the case F = R, we can only
consider ? = T . However, we cover the more general situations for the sake
of completeness and the ease of statements.

Unfortunately, neither the system (5) nor the system (7) can be readily
used to study equation (1), since the coefficient matrices (BT⊗A)+Π(C⊗DT )
and R, respectively, are not easy to handle.

The main result of this paper is a characterization of the uniqueness
of solution of (1) in terms of elementary spectral properties of the matrix
pencil

[ −λD? B?

A −λC
]
. These properties are exclusion conditions of eigenvalues,

similar to the ones given for the pencil A−λD? in the case of the ?-Sylvester
equation (2). In particular, our conditions contain the characterization for
the uniqueness of solution for equation (2), as well as the one for the equation
AX + CX? = E, considered in [5]. Another relevant instance of (1) is the
?-Stein equation AXB +X? = E, which has been recently considered in the
literature [2, 3, 9, 12]. Our results allow one to derive, as a particular case,
the conditions for uniqueness obtained in [12, Thm. 3] and [2, Thm. 4] for
this equation and ? = T .

The paper is organized as follows. In Section 2 we introduce or recall the
basic notions and definitions used along the paper, and we state some basic
results which are used later. In Section 3 we present a couple of previous
results (the characterization of the uniqueness of solution of ?-Sylvester and
?-Stein equations), together with some technical results which allow us to
reduce the proof of the main theorems to the case of ?-Sylvester equations.
The main result (namely, Theorem 15) is presented, and proved, in Section
4. Finally, in Section 5 we summarize the contributions of the paper and we
indicate a natural continuation of this work.

2. Notation, definitions, and basic results

Given a matrix M ∈ Cn×n, M−? denotes the inverse of M?. The notation
I stands for the identity matrix of size n× n.

Our main result is a characterization of the uniqueness of solution of
equation (8) in terms of spectral properties of a matrix pencil constructed
from the coefficients A,B,C,D. We recall here some standard notation and
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results from the theory of matrix pencils that will be used along the paper.
For more information on this topic, we refer the reader to [10, Ch. XII].

A matrix pencil P (λ) = M−λN , with M,N ∈ Cn×n is said to be regular if
det(P (λ)) is not identically zero. Otherwise, the pencil is said to be singular.
A finite eigenvalue of a regular matrix pencil P (λ) is a number λ0 ∈ C such
that det(P (λ0)) = 0. The regular pencil M−λN has an infinite eigenvalue if
N−λM has 0 as eigenvalue (equivalently, if N is singular). In particular, the
eigenvalues of a matrix M coincide with the eigenvalues of the pencil M−λI.
The spectrum of a regular matrix pencil P (λ), denoted by Λ(P ), is the set
of eigenvalues of P (λ) (finite and infinite). Analogously, the spectrum of the
matrix M is denoted by Λ(M). The algebraic multiplicity of an eigenvalue
λ0 of P (λ) is the multiplicity of λ0 as a root of the polynomial det(P (λ)),
while the multiplicity of the infinite eigenvalue is n−deg(det(P (λ))).

A strictly equivalent pencil to P (λ) is a pencil of the form UP (λ)V , with
U, V ∈ Cn×n invertible. Accordingly, the relation on the set of matrix pen-
cils obtained by multiplying a given pencil on the left and/or the right by
invertible matrices is called strict equivalence. Two strictly equivalent matrix
pencils have the same eigenvalues (finite and infinite) with the same algebraic
multiplicity. An eigenvalue of a pencil or a matrix is simple if it has alge-
braic multiplicity equal to 1. The algebraic multiplicity of an eigenvalue
λ0 of a pencil P (λ) or a matrix M will be denoted by mλ0(P ) or mλ0(M),
respectively.

The characterization of the uniqueness of solution of equation (8) will
strongly depend on the following notion, where we consider the set C =
C ∪ {∞} and the conventions 0−1 =∞, ∞−1 = 0, ∞ =∞.

Definition 1. (Reciprocal free and ∗-reciprocal free set) [13]. Let S be a
subset of C. We say that S is

(a) reciprocal free if λ 6= µ−1, for all λ, µ ∈ S;

(b) ∗-reciprocal free if λ 6= (µ)−1, for all λ, µ ∈ S.

This definition includes the values λ = 0,∞, since for these values λ−1 =
(λ)−1 =∞, 0, respectively.

Remark 1. Note that if S ⊆ C is reciprocal free, then ±1 6∈ S, since λ, µ
in Definition 1 can be equal. Similarly, if S ⊆ C is ∗-reciprocal free, then S
cannot contain any number of modulus 1.
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In the following, the name ?-reciprocal free set stands for both recipro-
cal and ∗-reciprocal free sets. We will use the following basic results on
?-reciprocal free sets.

Lemma 2. Let M,N ∈ Cn×n. Then Λ(M − λN) is ?-reciprocal free if and
only if Λ(N − λM) is ?-reciprocal free.

Proof. The result is an immediate consequence of the fact that λ0 ∈ Λ(M −
λN) if and only if λ−1

0 ∈ Λ(N − λM) (including λ0 = 0,∞).

Lemma 3. Let S be a subset of C, and define
√
S := {z ∈ C : z2 ∈ S},

with the convention ∞2 = ∞. Then S is ?-reciprocal free if and only if
√
S

is ?-reciprocal free.

Proof. Let us first assume that S is reciprocal free, and let z ∈
√
S. Then

z2 = s ∈ S. Now, if 1/z ∈
√
S, we would have 1/s = (1/z)2 ∈ S, which is

a contradiction with the fact that S is reciprocal free. Conversely, if
√
S is

reciprocal free, let s ∈ S, so that s = z2, for some z ∈
√
S. If 1/s ∈ S, then

we would have (1/z)2 = 1/s, so that 1/z ∈
√
S, which is a contradiction with

the fact that
√
S is reciprocal free.

For ∗-reciprocal free sets the proof is analogous. Let us first assume that
S is ∗-reciprocal free, and let z ∈

√
S, so that z2 = s ∈ S. Now, if 1/z ∈

√
S,

we would have 1/s = (1/z)2 ∈ S, a contradiction. Conversely, if
√
S is ∗-

reciprocal free, let s ∈ S, so that s = z2, for some z ∈
√
S. If 1/s ∈ S, then

we would have (1/z)2 = 1/s, so that 1/z ∈
√
S, again a contradiction.

Notice that these arguments hold also when S contains 0 and/or ∞.

3. Reduction process and auxiliary results

In this section, we show that the problem of the uniqueness of solution of
the general equation (8) can be reduced to the analysis of simpler equations
of the same type. We also present some technical results that will be used in
Section 4.

For the sake of completeness, and for further reference, let us recall the
characterization of uniqueness of solution of ?-Sylvester equations.

Theorem 4. (Characterization of uniqueness of solution of ?-Sylvester equa-
tions [1, 13]). Let A,D ∈ Cn×n. Then the matrix equation AX + X?D = 0
has a unique solution if and only if the pencil A− λD? is regular and:
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• If ? = T , Λ(A− λDT ) \ {1} is reciprocal free and m1(A− λDT ) 6 1.

• If ? = ∗, Λ(A− λD?) is ∗-reciprocal free.

The proof of Theorem 4 for the case ? = ∗ in [13] relies on some conti-
nuity arguments. For a different proof of Theorem 4 relying only on matrix
manipulations, see [7, Thms. 10-11].

If the matrices A and C in equation (8) are both singular, then there exist
nonzero vectors v, w such that Av = Cw = 0, and thus the nonzero matrix
vw? is a solution of (8). Also, if B and D are both singular, then there exist
nonzero vectors v, w such that B?v = D?w = 0, and thus the nonzero matrix
wv? is a solution of (8). We have thus proved the following result.

Lemma 5. The following two conditions are necessary for the existence of
a unique solution to equation (8):

(i) At least one of the matrices A and C is invertible.

(ii) At least one of the matrices B and D is invertible.

Later, in Theorem 15, we will show that the characterization of the
uniqueness of solution of (8) depends on some spectral properties of the
matrix pencil

Q(λ) =

[
−λD? B?

A −λC

]
. (9)

The following technical result deals with the determinant of this pencil
when at least one of the coefficients A and C is invertible.

Lemma 6. Let A,B,C,D ∈ Cn×n and let Q(λ) be the pencil in (9).

(a) If A is invertible, then

det(Q(λ)) = ± det(A) det(B? − λ2D?A−1C).

(b) If C is invertible, then

det(Q(λ)) = ± det(C) det(B?C−1A− λ2D?).
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Proof. (a) When A is invertible,[
0 I
I λD?A−1

] [
−λD∗ B?

A −λC

]
=

[
A −λC
0 B? − λ2D?A−1C

]
.

Taking determinants we get

(−1)n det(Q(λ)) = det(A) det(B? − λ2D?A−1C),

which gives the result.
(b) When C is invertible, the following identity holds[

λI B?C−1

0 I

] [
−λD? B?

A −λC

]
=

[
−λ2D? +B?C−1A 0

A −λC

]
.

Taking determinants in both sides, we get

λn det(Q(λ)) = det(B?C−1A− λ2D?)(−λ)n det(C),

and this completes the proof.

The following result also deals with spectral properties of the pencil Q(λ).

Lemma 7. Let the matrix pencil Q(λ) in (9) be regular. Then the values 0
and ∞ are eigenvalues of Q(λ) if and only if AB and CD are singular.

Proof. The matrix pencil Q(λ) has 0 as an eigenvalue if and only if the matrix
[ 0 B?

A 0 ] is singular and this happens if and only if one of the matrices A or B
(and thus AB) is singular. On the other hand, Q(λ) has ∞ as an eigenvalue
if and only if the matrix

[ −D? 0
0 −C

]
is singular and this happens if and only

if one of the matrices C or D (and thus CD) is singular.

Another spectral property of the pencil Q(λ) in (9) is given in Lemma 8.
This property is not going to be explicitly used in Section 4, but is implicitly
used in some arguments and claims.

Lemma 8. Assume that the matrix pencil Q(λ) in (9) is regular. Then
λ0 ∈ Λ(Q) if and only if −λ0 ∈ Λ(Q) and, moreover, the partial multiplicities
of both λ0 and −λ0 in Q(λ) coincide. In particular, λ0 is a simple eigenvalue
of Q(λ) if and only if −λ0 is a simple eigenvalue of Q(λ).
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Proof. Since [
I 0
0 −I

]
Q(λ)

[
−I 0
0 I

]
= Q(−λ),

we have that the two pencils Q(λ) and Q(−λ) are strictly equivalent and
thus they have the same eigenvalues with the same partial multiplicities.

Our reduction process will end up with ?-Sylvester equations, but going
through ?-Stein equations. For this, we need the following result that relates
the solution of the ?-Stein equation AXB + X? = 0 with the solution of an
associated ?-Sylvester equation.

Lemma 9. Let A,B ∈ Cn×n. Then the equation AXB + X? = 0 has a
unique solution if and only if the equation AB?Y + Y ? = 0 has a unique
solution.

Proof. First assume that there is some X 6= 0 such that AXB + X? = 0.
Applying the ? operator and premultiplying by A, we get AB?(X?A?)+AX =
0, so that Y = (AX)? is a solution of AB?Y + Y ? = 0. It remains to prove
that Y is nonzero. By contradiction, Y = 0 implies AX = 0 and, since
AXB +X? = 0, this would imply X = 0.

The opposite direction can be proved in a similary way. If we assume
that Y 6= 0 is such that AB?Y + Y ? = 0, then we get that X = B?Y is a
nonzero solution of AXB +X? = 0.

Lemma 9 has a remarkable consequence.

Theorem 10. (Characterization of uniqueness of solution of ?-Stein equa-
tions). Let A,B ∈ Cn×n. Then the equation AXB + X? = 0 has a unique
solution if and only if the following conditions hold:

• If ? = T , Λ(ABT ) \ {1} is reciprocal free and mABT (1) 6 1.

• If ? = ∗, Λ(AB∗) is ∗-reciprocal free.

The case ? = T of Corollary 10 has been already obtained in [12, Thm.
3] and [2, Thm. 4] by different means.

The following result is key in the reduction process, since it relates the
uniqueness of solution of (8) with the uniqueness of solution of two associated
?-Sylvester equations.
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Theorem 11. The equation AXB+CX?D = 0 has a unique solution if and
only if at least one of the following conditions (a)–(b) holds:

(a) A is invertible and D?A−1CY + Y ?B = 0 has a unique solution;

(b) C is invertible and B?C−1AY + Y ?D = 0 has a unique solution.

Proof. Let us first assume that (8) has a unique solution. Then by Lemma
5 we know that at least one between A and C is invertible and at least one
between B and D is invertible. Therefore, we consider the following two
cases.

Case 1: A invertible. Proceeding by contradiction, we assume that
D?A−1CY + Y ?B = 0 has a solution Y 6= 0. If D is invertible, then
we have C(Y D−1)D + A(D−?Y ?)B = 0, thus D−?Y ? is a nonzero solu-
tion of (8), a contradiction. If B is invertible, then the ?-Stein equation
D?A−1CY B−1 + Y ? = 0 has a nonzero solution. Lemma 9 implies that the
equation D?A−1CB−?Y + Y ? = 0 has a nonzero solution and, by Lemma 9
again, the equation D?ZB−1C?A−? + Z? = 0 has a solution Z 6= 0. Then
D?(ZB−1)C? + B?(B−?Z?)A? = 0, which means that ZB−1 is a nonzero
solution of (8), again a contradiction.

Case 2: C invertible. The proof is obtained by applying Case 1 to the
equation CXD + AX?B = 0.

To prove the converse, we assume first that (a) is true, in particular A is
invertible. Let us assume, by contradiction that (8) has a solution X 6= 0,
which is also a solution of (D?X)B+D?A−1C(X?D) = 0, and thus Y = X?D
is a solution of D?A−1CY + Y ?B = 0. Then X?D = 0 and, since X is a
solution of (8), this implies XB = 0. But, since at least one between B and
D is invertible, it must be X = 0, a contradiction.

The case where (b) is assumed to be true is similar.

As an immediate consequence of Theorems 4 and 11 we get the following.

Corollary 12. Equation (8) has a unique solution if and only if at least one
of the following conditions (a)–(b) holds:

(a) A is invertible, P (λ) = B? − λD?A−1C is regular, and it satisfies:

(a1) If ? = T , Λ(P ) \ {1} is reciprocal free and m1(P ) 6 1;

(a2) if ? = ∗, Λ(P ) is ∗-reciprocal free.
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(b) C is invertible, P (λ) = D? − λB?C−1A is regular, and it satisfies:

(b1) If ? = T , Λ(P ) \ {1} is reciprocal free, and m1(P ) 6 1;

(b2) if ? = ∗, Λ(P ) is ∗-reciprocal free.

We emphasize that Corollary 12 generalizes the known results for equa-
tions (2) (given in Theorem 4) and AX + CX? = 0 (given in [5, Th. 5.2]).

Below we give the counterparts of Theorem 11 and Corollary 12, obtained
after Corollary 5 replacing the roles of A and D by C and B, respectively.

Theorem 13. The equation AXB+CX?D = 0 has a unique solution if and
only if at least one of the following conditions (a)–(b) holds:

(a) B is invertible and AY + Y ?DB−1C? = 0 has a unique solution;

(b) D is invertible and CY + Y ?BD−1A? = 0 has a unique solution.

Corollary 14. Equation (8) has a unique solution if and only if at least one
of the following conditions (a)–(b) holds:

(a) B is invertible, P (λ) = A− λCB−?D? is regular, and it satisfies:

(a1) If ? = T , Λ(P ) \ {1} is reciprocal free and m1(P ) 6 1;

(a2) if ? = ∗, Λ(P ) is ∗-reciprocal free.

(b) D is invertible, P (λ) = C − λAD−?B? is regular, and it satisfies:

(b1) If ? = T , Λ(P ) \ {1} is reciprocal free, and m1(P ) 6 1;

(b2) if ? = ∗, Λ(P ) is ∗-reciprocal free.

4. Characterization of the uniqueness of solution

In this section we state and prove the main result of this paper, namely,
the characterization of the uniqueness of solution of (8), which is given in
the following result.

Theorem 15. Let A,B,C,D ∈ Cn×n, and let Q(λ) =
[ −λD? B?

A −λC
]
. Then

the equation AXB +CX?D = 0 has a unique solution if and only if Q(λ) is
regular and:

• If ? = T , Λ(Q) \ {±1} is reciprocal free and m1(Q) = m−1(Q) 6 1.
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• If ? = ∗, Λ(Q) is ∗-reciprocal free.

Proof. We first consider the case ? = T .
Let us first assume that (8) has a unique solution. Then, at least one of

(a) or (b) in the statement of Corollary 12 occur.
Let us focus first on case (a). Set Q1(λ) = B? − λD?A−1C. By Lemma

6–(a), we have Λ(Q) =
√

Λ(Q1) and m1(Q) = m−1(Q) = m1(Q1). Since√
S \ {1} =

√
S \ {±1},

for any S ⊆ C, then (a1) in the statement of Corollary 12, together with
Lemma 3, imply that Λ(Q) \ {±1} is reciprocal free and m1(Q) = m−1(Q) =
m1(Q1) 6 1, as wanted.

For case (b) in Corollary 12 the arguments are exactly the same replacing
Q1(λ) by Q2(λ) = D? − λB?C−1A.

For the converse, assume that the conditions in the statement about Q(λ)
hold. Since Λ(Q) \ {±1} is reciprocal free, by Lemma 7, one of AB or CD
is invertible. Then A is invertible or D is invertible. In the first case, and
reversing the arguments above for the converse implication, we conclude that
Q1(λ) is regular, Λ(Q1) \ {1} is reciprocal free, and m1(Q1) 6 1, and then
Corollary 12 implies that (8) has a unique solution. In the second case, the
arguments are the same with Q2(λ) instead of Q1(λ).

The proof for ? = ∗ mimics the one for ? = T , just replacing the transpose
with the conjugate transpose and removing the condition on the eigenvalues
λ = ±1 along the proof.

Observing that, with respect to uniqueness, the equationAXB+CX?D =
0 is equivalent to other ?-Sylvester equations, such as

D?XC?+B?X?A? = 0, CXD+AX?B = 0, B?XA?+D?X?C? = 0,

we could replace Q(λ) in the statement of Theorem 15 by any of the following
pencils[

−λA C
D? −λB?

]
,

[
−λB? D?

C −λA

]
,

[
−λC A
B? −λD?

]
.

Other variations can be obtained by changing both signs of A and B or C
and D, or by changing the role of the leading and trailing coefficient in Q(λ)
(see Lemma 2). Thus, Theorem 15 can be stated using, for instance,[

λD? B?

A λC

]
,

[
λD? −B?

−A λC

]
,

[
−D? λB?

λA −C

]
.
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5. Conclusions and open problems

We have obtained necessary and sufficient conditions for the uniqueness
of solution of the matrix equation AXB + CX?D = E, for any right hand
side, explicitly in terms of the coefficients A,B,C,D. More precisely, these
conditions are given in terms of spectral properties of the pencil

[ −λD? B?

A −λC
]

and are very simple to state. Our characterization includes, as particular
cases, the ones already known for the ?-Sylvester equation AX +X?D = E,
the ?-Stein equation AXB + X? = E, and the equation AX + CX? = E.
In view of possible applications, a subject of future work is the design and
numerical analysis of an efficient algorithm for the solution of this equation.
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Robol, and Massimiliano Fasi for helpful discussions that originated this
work. We are particularly indebted to Federico Poloni, who posed the con-
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